WASTX Supported by **EVANCE CONTRUMENTAL** ELM stability modification using 3D fields from a single row off-midplane coils on NSTX

College W&M Colorado Sch Mines Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

D.J. Battaglia^{1*}, J. Canik¹, R. Maingi¹

¹ Oak Ridge National Laboratory, Oak Ridge, TN

* Participant in the U.S. DOE Fusion Energy Postdoctoral Research Program administered by ORISE & ORAU

> NSTX Research Forum Princeton, NJ Dec. 1 - 3, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Experiments on NSTX showed a modification, but not suppression, of ELMs using 3D perturbations

<u>n = 2 DC field vs. no field</u>

 D_{α} (arb) D_{α} (arb) 2.0 2.0 1.0 Ω 0 Plasma stored energy (kJ) Plasma stored energy (kJ) 127541 127532 140 140 127543 127531 120 120 100 100 80 80 RMP coil current (kA) RMP coil current (A) 400 2 200 -2 0 0.24 0.26 0.28 0.30 0.32 0.24 0.22 0.26 0.28 0.30 0.32 seconds seconds

S.A. Sabbagh et. al., *Workshop: Modeling of plasma effects of applied resonant magnetic perturbations*, San Diego, CA Aug, 2008

NSTX Research Forum

n = 2 AC field, 70 Hz vs. no field

Strong non-resonant braking at maximum of applied field perturbation

applied resonant magnetic perturbations, San Diego, CA Aug, 2008

@NSTX

DIII-D experiments demonstrated ELM suppression using a single row of off-midplane coils

- ELM suppression using internal, offmidplane coils
 - Successful with both single row and two rows
 - Not successful with external midplane coil
 - Amplitude of perturbation chosen so resonant amplitude similar
- Attributed to a wider island overlap region
 - Large aperture → increased low-m coupling

NSTX Research Forum

Off-midplane fields reduce non-resonant components in the core

- Shift plasma down 10 cm or more
 - Gives off-midplane perturbation
- Improves resonant • coupling
 - Also reduces nonresonant amplitude inside core (reduced braking)

20

0 m poloidal number

40

60

-20

-40

-60

Propose experiment to test ELM suppression using 3D off-midplane fields

- Propose 1 day experiment
 - Use ISOLVER to plan possible shapes
 - Develop ELMing discharge with $-\Delta z > 10$ cm
 - Apply n = 3 perturbation and increase amplitude until ELMs or suppressed or plasma quickly disrupts due to braking
 - If successful at ELM suppression, try similar shape with $\Delta z = 0$ or scan Δz back to zero to provide reference
- Interest in experiment
 - Demonstrate ELM suppression using external coils
 - First comparison of midplane and off-midplane perturbations using the same coil set – does outboard location matter?
 - Different rotation braking profile
 - Discharges explore off-midplane NBI current drive

Chirikov profile

NSTX Research Forum

q profiles

NSTX Research Forum